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ABSTRACT 
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We also revisit Deligne's conjecture on special values of symmetric  cube 

L-functions. 
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1. In troduct ion  

The purpose of this paper is to give a short proof of the holomorphy of the 

completed Rankin triple L-function for three cuspidal representations of GL2. 

The proof follows the same approach as the one in [Ki-Sh], where we proved the 

same result for the symmetric cube L-function for a non-monomial cusp form on 

GL2. We conclude the paper by proving Deligne's conjecture [D] for the special 

values of the symmetric cube L-function at its critical values, as well as prove 

that  the root numbers attached to the third and the fourth symmetric powers of 

a cusp form on GL2 are Artin factors via local Langlands conjecture [Ku, La3]. 

More precisely, let 7ri, i = 1, 2, 3, be three cuspidal representations of GL2(A), 

where A = AF is the ring of adeles of a number field F.  For each i, write 

lr~ = ® ~ . .  Let S be a finite set of places for which all lri~'s, i = 1, 2, 3, are 

unramified, whenever v ¢ S. Let 

(diag(al . ,  a2~), diag(/31~,f12"), diag(71.,72~)) C GL2(C) × GL2(C) × GL2(C) 

denote representatives for the three semisimple conjugacy classes in GL~(C) 

which are attached to ~ri~, i = 1, 2, 3, for each v ¢ S. The local component 

of the Rankin triple L-function at each v ¢ S is simply given by 

= ~ . Z j ~ z ~ q .  ) L(~ ,~I~  × ~2~ × ~3o) 1-[ (1 - ~  -8 -1 
i,j,k=l,2 

Let 

L s ( s ,  ~1 × ~2 × ~3) = I I  L(s ,  ~1.  × ~2~ × ~3.)-  
v~S 

Using the split group Spin(8) and its Levi subgroup isomorphic to 

(SL2 × SL2 × SL2 ×GL1) /{+I} ,  

the second author defined a local L-function and a local root number at each 

v E S, canonically as to agree with local Langlands correspondence, and proved 

the standard functional equations that the completed triple product L-function 

satisfies, all in the context Of the Langlands-Shahidi method [Shl-7]. 

It was Garret t  [Ga] who first found an integral representation for 

Ls(S, rl × ~r2 × r3) for three holomorphic forms. This was extended to 

arbitrary cuspidal representations of GL2(A) by Piatetski-Shapiro and Rallis 

[PS-Ra]. On the other hand, using [PS-Ra], Ikeda [Ik] defined local L-functions 

L(s, ~rl~ × r2~ × r3~) at every v E S, and using an idea of Blasius determined 

the poles of the completed L-function. In particular, he showed that  it does not 
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have a pole unless all of the Iri's are monomial, which simply means that  lri is 

stable under twist by a nontrivial character of F*\A*. 

In a recent paper, Ramakrishnan [Ram2] completed the whole process of 

integral representations and proved that the local factors defined either by this 

method, that  of Langlands-Shahidi discussed above, or the one coming from 

representations of the Deligne-Weit group parametrizing f i r ' s  are all the same. 

(He in fact proved much more and, in particular, the modularity of r l  x 7r2.) 

In this paper we use our own method [Shl,Ki3,Ki-Sh ] to prove the holomorphy 

of L(s, r l  × r2 x ~r3) on all of C, where at least one of the representations is not 

monomial. Our method is quite effective and avoids a lot of local analysis which 

is necessary in the method of integral representations. The local analysis is only 

that of local intertwining operators for which systematic and reasonably general 

results are now available (cf. [C-Sh], [Ki3], [Ki-Sh], [Za], [Zh]). 

Because of the functional equation, we only have to prove the holomorphy for 

1 Without loss of generality, we can and will assume that  po}es of the Re(s) > ~. 

L-functions are on the real axis (see section 3). We have to divide into four cases: 

1 < s < 1,s > 1, s = ½, and s = 1. As in [Ki-Sh], s = 1 is done using quadratic 
1 base change. For the case i < s < 1, s > 1, we closely follow [Ki-Sh], using 

Ramakrishnan's result [Raml] and some results on unitary representations [Li]. 

For s = 1, we use the fact that  the local L-functions are holomorphic for Re s > 

(Re s > 1 is enough) and thus the completed L-functions and Ikeda's definition 

of L-functions have poles at the same place for Re s > 1 (or use [Ram2]). We 

then use Ikeda's result. 

We should note that  the same method would also apply to twisted triple L- 

functions (Cases 2D4 - 1, aD4 - 1, and 6D4 - 1 in [Sh3]). We leave this to a 

future paper. 

We conclude the paper by proving Deligne's conjecture [D, Z] on the special 

critical values of symmetric cube L-functions for holomorphic forms on GL(2). 

We do this using the results of Garrett  and Harris [GH] in which they prove Bla- 

sius's interpretation [B] of Deligne's conjecture for the triple product L-function, 

combined with Shimura IS]. We refer to Orloff [O] for level 1 results of [GH]. 

Beside a careful checking of special value results established in [B, GH, S], which 

in one form or other should be known to experts (cf. Theorem 6.3 of [GH]), it 

is the finiteness of these values [Ki-Sh] which makes our Theorem 4.1 new and 

deep. Finally, in Theorem 4.2 we show that the local root numbers for the third 

and fourth symmetric power L-functions defined in [Shb, Sh7] are in fact those of 

Artin attached to their parametrizations by means of the local Langlands conjec- 
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ture [Ku, La3], using the recent important proof of the local Langlands conjecture 
for GLn by Harris and Taylor [HT]. 

The second author wishes to thank E. de Shalit, J. Rogawski, and P. Schneider 

for their kind invitation to their conference: "p-adic aspects of the theory of 

automorphic representations," February 98, Jerusalem, in connection with which 

this manuscript was prepared. 

2. Some facts on unitary representations 

In this section, we assume that F is a local field of characteristic 0. We restrict 
ourselves to the case of split reductive groups. Let X be an unramified unitary 

character of T and A E a* = X ( T ) F  ® R and X' =- A ® X. Then the induced rep- 

resentation I(A, X) = Ind~ X' is defined. It has a unique unramified irreducible 

subquotient, denoted by lr(A, X). Suppose A is in the closed positive Weyl cham- 

ber and let A1 = {a E A I Aoa  v = 1}. Let P1 = MINI  be the standard parabolic 

subgroup of G generated by the roots in A1. Let ~rl be the unique irreducible 
M1 spherical subrepresentation of IndsnM~ X. 

THEOREM 2.1 ([Li, Theorem 2.2, page 749]): The following are equivalent: 

(1)  x '  o # t i for  a n y  

(2) Indp c, A ® ~rl is irreducible (hence equals lr(A, X)), 

(3) r(A,z)  is generic. 

PROPOSITION 2.2 ([Li, Lemma 2.3, page 751]): Let G and G be unramified 

reductive groups over F, and let ¢ : G,  ) G be a central isogeny defined over F. 

Let [~ = T(] be a Borel F-subgroup of G and assume ¢ maps B, T, G ( O ) to B, T 

and G(O), respectively. Let X be an unramified unitary character o fT .  Then 

w e  c a n  define a unitary character ~ = ¢*(X) o fT  by )~({) = 2:(¢({))- Conversely, 

given any ~, there will be finitely many X such that )~ = ¢*(X). Then ~r(A,)~) is 

unitary if and only i f  ~r(A, X) is. 

3. M a i n  results 

Let ~ri, i = 1, 2, 3, be cuspidal representations of GL2(AF) with central characters 

wi, i = 1, 2, 3. Let w = wlw2wa. Let 7ri., i = 1, 2, 3, be unramified for v ~ S, 

where S is a finite set of places including archimedean places. Then r i .  -- 
7r(#i., vi~), i = 1, 2, 3, where #i, ,  vi. are unramified quasi-characters of Fv x . Let 

= = # i v  = = = 
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~'2v -- v3" (w). Then  the local Rankin triple L-funct ion is defined to be 

L ( s , . l v  x x -3v ,  p2 ® p2 ® p2) = 1-I (1 - -1 ,  
i,j,k=l,2 

where P2 is the s tandard  representation of GL2(C). Let 

Ls(s ,  7rl × 1r2 x 7r3, P2 ® P2 ® P2) = 1-I L(s, 7rlv x "ff2v X 7r3v ,/)2 ® P2 ® P2).  

v$S 

For simplicity, we set L(s, 7rl, x 7r2v x 7r3v) = L(s,  7rlv x 7r2v × 7r3v, P2 ® P2 @ P2) 

and Ls(s ,  7ri x 7r2 × ~r3) = Ls(s ,  7ri x 7r2 x 7r3, P2 ® P2 ® P2). 

Let G = Spin(8) and e = {(~i = ei - e2, c~3 = e3 - ea, a¢ = e3 + ea}. Let 

T C Me = M be the Levi subgroup of G generated by e and let P = M N  be 

the corresponding s tandard  parabolic subgroup of G. Then  s tandard  calculations 

show tha t  M = (GL1 × SL2 x SL2 × SL2)/{-f-1}, where - 1  = ( - 1 ,  -12 ,  -12 ,  -12) .  

More precisely, M = A × M D / ( A  U MD), where MD -~ SL2 x SL2 x SL2 and 

A _~ GLi  is the connected component  of the center of M;  

A = {H~l( t )H,~( t2)H~3(t )H~(t ) :  t E F*},  

A N MD = {H~( t )H~2( t2 )H~( t )H~, ( t ) :  t 2 = 1}. 

Let ~r~o, i = 1 ,2 ,3 ,  denote constituents of rilSL2(AF), resp. Then  a = 

wiw2w3 @ r io  ® r20 ® lr30 is a cuspidal representation on M(AF) .  Denote by 

L M  the L-group of M and let Ln be the Lie algebra of the L-group of N.  Let r 

be the adjoint act ion of L M  on Lrt. Then  we have [Sh4] 

r = r 1 (~ ?'2 

L(s, av, r i )  = L(s, 7riv x r2" x lr3v) 

L(s, cb, r2) = L(s, w~) 

For each v E S, Shahidi [Shl, Sh6] defined the local L-function L(s, av, r i ) .  I t  

is defined to agree completely with Langlands '  definition of L-functions defined 

in terms of parametr izat ion.  In particular, the L-function for a rb i t rary  a .  is 

just  the analyt ic  cont inuat ion of the one at tached to the tempered inducing da ta  

th rough  the product  formula (cf. par t  3 of Theorem 3.5 and equation 7.10 of 

[Shl]). Denote  by L(s, 7ri x ~r2 x ~r3) the completed triple L-funct ion 

L(s,~rl × 7r2 x 7r3)---- 1-[ L(s'~rlv × 71"2v X 7r3v ). 
all v 
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THEOREM 3.1 ([Shl]): The L-function L(s, Trl × 7r2 × ~r3) can be continued to 
a meromorphic function on the whole complex plane and satisfies the standard 
functional equation L(8, ~rl × zr2 x ~r3) = e(s, ~rl x 7r2 x Ir3)L(1 - s, ~1 × ~2 x ~3 ) -  

Because of this theorem, it is enough to consider the holomorphy for Re s > ! 
- -  2 "  

We assume that  the central character of 0, i.e., w, is trivial on F + ,  where A~ -- 

]I1.F + with ~ 1 ideles of norm 1, so that the poles of Eisenstein series may be on the 

real axis. Then, the poles of the Eisenstein series attached to (M, 0) coincide with 

those of its constant term. Let a be the unique simple root in N. As in [Shl], let 

5 -- (p, a / -1 .p ,  where p is half the sum of roots in N. We identify s • C with s& • 

a t and denote I(s, a) -- I(s&, 0) = Ind~p o ® exp((s&, Hp())) .  Let A(s&, a, To) 
be the standard intertwining operator from I(s&, a) into I(wo(sh), To(a)). For 

f • I(s, 0), let E(s, f ,  g, P) be the Eisenstein series attached to (M, 0). Then 

the constant term of E(s, f ,  g, P) along N is given by 

EN(S, f ,  g, P) = f(g) + M(s, 0, wo)f(g), 

where M(s, a, To) -- ®vA(s, 0~, To) ([Lal, La2, M-W1, Kil,  Ki2]). We normalize 

the intertwining operator A(s, 0~, To) as follows [Shl]: 

A(s, a,, To) = r(s, av, wo)N(s, av, To), 

2 L(is, av, ri) 
r(s, or, To) = 1-I L(1 + is, av, ?i)e(s, av, ri, ¢v)" 

i----1 

Let Y(s ,  0, To) = ®vg(s,  or, To), r(s, 0, To) -- 1-Iv r(s, av, To) and e(s, 0, ri) = 
I-Iv e(s, av, ri, Cv). Then we have, for f • I(s, 0), 

2 L(is, 0, ~i) 
M(s, 0, wo)f =r(s, 0, wo)N(s, 0, To)f, r(s, 0, To) = H  5(1 + is, a, ~i)e(s, 0, ~i)" 

i=1 

PROPOSITIDN 3.2: The normalized intertwining operator N(s, av, To) is holo- 
morphic and non-zero for Re s > 0. 

Proof'. If av is tempered, then the unnormalized intertwining operator 

A(s, or, To) is holomorphic and non-zero for Re(s) > 0, while the local L-function 

L(s, av, rl) is holomorphic there since Conjecture 7.1 of [Shl, Proposition 7.2] 

applies. 
If ov is non-tempered, we write I(s, av) as in [Ki3, p. 481], 

T_~G(F~) @ q(S&+io,HPo( )) I(s, av) ---- I (s5 + A0, r0) = XUUMo(~, )No(F,)TrO • 1, 
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where r0 is a tempered representation of Mo(F,) and Po = MoNo is another 

parabolic subgroup of G. We can identify the normalized operator N(s, a,, wo) 
with the normalized operator N(s& + Ao, 7to, wo), which is a product of rank-one 

operators attached to tempered representations (cf. [Zh, Proposition 1]). 

If av is non-tempered, we can easily check that these rank one operators are 

operators for either a minimal parabolic inside a group whose derived group is 

SL2; a parabolic subgroup whose Levi subgroup has a derived group isomorphic 

to SL2 inside a group whose derived group is SLa; or isomorphic to SL2 x SL2 

inside a group with SLa as its derived group. 

These operators are then restrictions, to SL2, SL3, and SL4, respectively, of 

corresponding standard operators for GL,~, n = 2, 3, 4. 

From [M-W2, Proposition 1.10] one knows that these rank one operators 

are holomorphic for Re(s) > -1 .  Thus we only need to check that  

Re((s& + A0,/3v/) > - 1  for all positive roots of G with respect to Aoo and 

for Re(s) > 0, where Mo = Moo, 00 C 0. 

Since G is simply connected, we can embed our three copies of SL2 in G. We 

can therefore write 

s & + A o = ( s + r l ) e l + ( s -  r l )e2+(r2+r3)e3+(r2 - r3)e4, 

where ri = 0 if 7riv is tempered, and 0 < ri < 1/4 if 7ri. is non-tempered. 

Consequently if Re(s) > 0, then Re(s) - r l  - (r2 + r3) > 0. 

Ranging/~ over positive roots of G with respect to T, realized as roots of Aoo, 

one determines that the least value of Re((s& + Ao,/3v)) is Re(s) - r l  - (r2 + r3) 

which, as we observed above, is larger than -1 .  Consequently, N ( sh +A o ,  7to, wo) 

is holomorphic for Re(s) > 0. By Zhang's Lemma (cf. [Ki4, Lemma 1.7]) it is 

non-zero as well. | 

Remark: In this paper we only need the statement of Proposition 3.2 for 

Re(s) > 1/2. 

Denote the image of N(s, av, wo) by J(s,~rv). If ~r, is tempered, it is the 

usual Langlands' quotient J(s, qv). But if av is non-tempered, it is a Langlands' 

quotient from smaller parabolic subgroups. Let J(s, a) = ®,J(s, a,). Recall the 

following [Ki4, Observation 1.3]: 

LEMMA 3.3: If  r(s, cr, wo) has a pole for s > O, then J(s, ~r) = ®vJ(s,  ~rv) belongs 
to the residual spectrum L2dis(G(F)\G(A))(M,,) and, in particular, each J(s, qv) 
is unitary. 
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LEMMA 3.4: Let  F be a local field. Let #i, i = 1, 2, 3, 4, be uni ta ry  unramified 

characters o f  F x and let 7(1 - - - -  Ind GL2 Pl × ~2. We assume that 7(1 has trivial 

central character, i.e., #1#2 = 1. Let  7(2 be the unique generic component  of  
i JSO4 1 I~ASO8 noB #3 x #4. Then i f  s > ~ s # 1, I = , ~UUGL2xSO 4 Idet187(1 x 7(2 is 
irreducible but  not unitary. 

Proof'. By Theo rem 2.1, if s > ½, s # 1, I is irreducible. Therefore I cannot  be 
1 uni ta ry  for s > 1. Suppose ~ < s < 1 and I is unitary.  Since #2 = #~-1, 

t_~so~ t .so  I1%×1 I-% I -~ ~ u u F x  x F  x xSO4 I IS/~l X] ls#i -1 ×7(2 "" I n ( I F ×  x F  x xSO4 

T - S O 8  
In% ,×so  7((I I% × 11-%)× 

where c4 is the sign change. Note tha t  ~r(] 18#i x ] ] -~#i)  is hermi t ian  for all s 

and therefore,  by [Mu, L e m m a  5.1], zr(I 18#1 x I I-~#1) must  be unitary.  This  is 
1 a contradic t ion since this last representat ion is not uni tary  for s > ~. | 

LEMMA 3.5: Let  7(1, 7(2, 7r3 be three cuspidal representations of  GL2. Let  T be 

the set  o f  places where 7(lv, 7(2~, 7(3v are all tempered.  Then 6_(T) > 7 

Proof: Let Ti be the set of places where 7(i. is t empered  for i = 1, 2, 3. Then  

f rom [Raml] ,  5_(T/) > 9 for i = 1, 2, 3. Let Z be the set of all places. Then  

6 ( T 1 - T 2 )  _< 6 ( X - T 2 )  _< ~0" We have T1 = (T lC~T2)U(T1-T2) .  So_5(T1NT2) _> 
_ 7 | 6 ( T 1 ) - 6 ( T 1 - T 2 )  > 9 i s Similarly, wehave~_(T1NT2nT3)  > 1-6" 

- -  - -  1 0  1 0  1 0 "  

LEMMA 3.6: The local L-funct ion L(s ,  zrlv x ~r2v x 7(3v) is holomorphic for 

Res_> 3. 

Proof: The  first s t a tement  follows from the definition of the local 

L-funct ions and G e l b a r t - J a c q u e t ' s  es t imates  on Fourier coefficients [Ge-Ja]; 7% = 

1 for any v, unramified or ramified. | 7(( 1 F, Fr), r < 

1 Then w 2 1. LEMMA 3.7: Suppose r ( s ,a ,  wo) has a pole for s > ~. 

Proof: Suppose a .  is tempered.  Then  by assumption,  J(s ,  7(v) is un i ta ry  and 
2 l f o r a  2 1. By L e m m a  3.5, wv therefore J ( s ,  7%) is hermit ian.  So we have w~ = = 

set of pr imes whose lower Dirichlet density is at  least 7/10. One can now apply  

the result of Hecke tha t  two idele class characters agreeing at  all the places in a 

set of Dirichlet density larger than  1/2 are equal, to conclude tha t  W 2 = 1. | 
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PROPOSITION 3 . 8 :  Under the assumption that w is trivial on F +, the possible 
poles of the triple L-function L(s, ~ri × 7r2 x 1r3) for Re(s) _> 1/2 are at  s = 1/2, 1. 

Proo£" By Lemma 3.7, we can assume w 2 = 1. Then  w, = 1 for a set of 

i By Lemma 3.5, there exists a place v where ~hv, i = 1, 2, 3, places of density 5" 

are tempered,  unramified, and wv = 1. Let 7riv = 7r(#i, ui), i = 1,2,3.  Then  

wiv = #Wi. Under the isogeny Spin(8) ~-+ SOs, I(s,(rv) corresponds to an 

induced representat ion 

sos IndGL2xSO 4 I det Is~rl x 7r2, 

where 7ri = IndB GL2 zli z ~/2, 7/2 = #~w2w3, ~1~ = u2w2w3, and 7r2 is the unique 
T J S O  4 --I --I --I --I generic component of Inu B 7/3 × 74, 772 and ~ ~ ~t 2 V2~3/13 l-t2/] 2 ~t3/2 3 , 

By Proposi t ion 2.2, J(s,a~) is not  uni tary  if s > 1/2~ s ~ 1. Hence by 

Proposi t ion  3.2 and Lemma 3.3, r(s,a, wo) does not have a pole for s in the 

same range. Using this fact, the definition of r(s,b, Wo), and s tar t ing with 

Re(s) large where bo th  L-functions converge absolutely, one can argue induc- 

tively tha t  L(s, 7rl × 7c2 × 7r3)L(2s, w) is holomorphic for Re(s) > 1, appealing to 

non-vanishing of L(s, w) for Re(s) > 1 in each step. Since L(2s, w) is in fact non- 

zero for Re(s) ?_ 1/2, we conclude tha t  the poles of r(s, b, To) for Re(s) ?_ 1/2 

are those of L(s, 7rl x r2 × ~r3). This implies tha t  poles of L(s, 7rl × ~r2 × 7r3) are 

all real and possibly only at s = 1/2 and 1 if Re(s) > 1/2. | 

i PROPOSITION 3.9: The triple L-function does not have a pole at s = 5" 

Proof:  By Lemma 3.7, w 2 = 1. If w = 1, then the triple L-funct ion does not 

z because the Eisenstein series has only simple poles and the have a pole at  s = 

i Suppose w 2 1,w 7~ 1. Let E l F  be pole is already tha t  of L(2s, w) at s 3" = 

the quadrat ic  extension defined by w via class field theory. Denote by Hi the 

base change of 7ri to GL2(AE). Then 

(3.9.1) L(s,  n~ × rI~ × rI~) = L(s, ~ × ~2 × ~ ) L ( s ,  ( ~  ® ~) × ~ × ~). 

It  is enough to prove (3.9.1) locally. It clearly holds when v = oc or 7ri~'s 

are all unramified, i = 1, 2, 3. Next we assume all 7fir's are supercuspidal and 

apply Proposi t ion 5.1 and functional equation (3.14) of [Shl] to conclude, up to 

multiplication by appropriate  A-functions, the equality 

7 ( s , l / i ~  x II2~ x II3w, CE~/F,~) =7(s ,  lr,,  x ~2~, x r 3 ~ ,  ~ F , , )  
(3.9.2) 
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where CF. is an additive character and CE~/F. = CF. " TrE~IF~, WlV. 

Next assume f i r ' s  are tempered, but not all supercuspidal. Then (3.9.2) is a 

consequence of multiplicativity of 7-functions (part 3 of Theorem 3.5 of [Shl]) and 

similar identities for Rankin-Selberg 7-functions for GL2 × GL2 and GL1 x GL2. 

The local version of equality (3.9.1) in the tempered case then follows immediately 

from (3.9.2) since L-functions in [Shl] are defined by means of zeros of 7-functions 

(Section 7 of [Shl]), when the representations are tempered. For arbitrary local 

representations, the L-functions are defined in [Shl] by analytic continuation of 

tempered ones in terms of their Langlands parameters (page 308 of [Shl]). This 

proves (3.9.1) in general. 

It should be pointed out that parametrizations in [Ku], [HT], and [H2] are not 

enough to prove (3.9.1), since [HT] only guarantees equality of L-functions for 

Rankin-Selberg product L-functions for GL2 × GL2, but not GL2 x GL2 × GL2. 

Now note that  if ~ri is not monomial [L-La], H~ remains cuspidal. In this case, 
1 the left hand side of (3.9.1) is holomorphic at s = ~ since wit = 1. Suppose one 

of 7ri is monomial, say ~rl. Then 1-I1 is not cuspidal. Consequently, 131 = ~r(tt, v) 

for some grSssencharacters # and t,. Then 

(3.9.3) L(s ,  131 x II2 x YI3) = L(s ,  (112 ® #) x 113)L(s, (132 ® , )  × II3). 

One only needs to prove (3.9.3) locally, to which again the same types of argu- 

ments as those for the proof of (3.9.1) apply. In fact, (3.9.3) is locally precisely 

the multiplicativity of L-functions which one can get from multiplicativity of 

7-functions (part 3 of Theorem 3.5 of [Shl]), since 

131v ® 132v ® 133v = Ind[(#v, Vv) ® H2v ® H3v]. 

At any rate L(s, II1 × 112 × 133) is holomorphic at s = 1/2 in all cases. 

Note that  7r~ ® wi = #i, and by the functional equation 

1 1 1 
L(~,  7rl × 7r2 × 7r3) = ~(~, 7rl × 7r2 × ~'3)L(~, ~1 x ~2 x ~'3). 

Thus if L(s, ~rl × 7r2 x ~r3) has a pole at s = ½, then L(s, H1 x lie x 1-[3) must 

have a double pole at s = ½. This contradicts the holomorphy (in fact simplicity 

of the pole is enough) of L(s, Hi × 132 × 113) at s = ½, as the central character of 

13 is trivial. I 

PROPOSITION 3.10 (Ikeda): Suppose the triple L-function L(s ,  7rl x 7r2 × 7r3) has 

a pole at s = 1. Then w 2 = l a n d w  # 1. Let  E be the quadratic extension 

o f  F corresponding to w by class field theory. Then there exist quasi-characters 
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X1, X2, X3 o f A ~ / E ×  such that  r l  = 7r(X1), r2 = r(X2), r3 -- ~(X3) and X1X2X3 = 

1. 

Proof'. By Lemma 3.7, w 2 = 1. By Lemma 3.6 and [Ik, Lemma 2.1], for Re s > 1, 

the location of the poles of the completed triple L-functions and those of Ikeda's 

definition of the L-functions coincide. Therefore, if w = 1, the completed L- 

function is holomorphic at s = 1 by [Ik, Proposition 2.5]. If w ~ 1, we pro- 

ceed exactly in the same way as in [Ik, Theorem 2.6], using the quadratic base 

change. | 

Remark 3.1: We were unable to prove the holomorphy of the completed L- 

function at s -- 1 when w -- 1, without Ikeda's result [Ik, Proposition 2.5]. 

THEOREM 3.11: The completed triple L-function L(s,~rz x ~2 x r3) is 5010- 

morphic except  possibly at s = O, 1. 

Proo~ This follows from the functional equation of the triple L-function and 

Propositions 3.8 and 3.9. | 

4. Special  values and root  numbers  for symmetric  cube L-functions 

Let ~ be a normalized holomorphic new eigenform of (even) weight k and Neben- 

typus e with respect to FI(N).  Let E be the field generated over Q by Fourier 

coefficients of ~. We consider E as a subfield of complex numbers. We will write 

a ~ b for two non-zero complex numbers a and b if ab -1 E E.  

Next, let c + and c-  be Deligne's periods of ~ (cf. [D, Z]). In particular, they 

satisfy 

L/(~,  ~) ~ (2~i)~c +, 

where + -- ( -1 )  ~, 1 < ~ < k - 1. Here L l ( s  , ~) denotes the finite part of the 

L-function of ~, or the corresponding Dirichlet series. Moreover, let G(e) be the 

Gauss sum 
N 

= 

a~-I 

attached to e: (Z/nZ)* - -+  C*, and set (cf. [B, D]) 

(4.1) 

Recall that  

5 ( v )  = 

L l ( s  , ~o) = I I ( 1  - app - s  + e(p)pk-l-2s) -1, 
P 
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where c(p) = 0 if piN. Write 

L p ( s ,  = 1 - a p p  - 8  + 

= (1 - app-S) (1  - app-S). 

" = 0 and  T h e n  ap~ ap" = e(p)p k-1 and we will unders tand tha t  if piN, then  ap 
ap  = ap. We then  define 

e,def~,  1 ) (  '2 ,, - 8 \ - 1 , .  , " 2  - 8 , - 1  Lp(s, ® ----- - -  Olp OLpp ) ~1 - -  OtpO~p p ) . 

Then  

Lp(s, ~o ® ~) = (1 - e(p)app -(8-(k-1)) + e(p)2e(p)pk-l-2(8-(k-1)))-I 

= ip(S  - (k - 1), ~, E), 

where the last  factor  is the p th  factor of Ll ( s  - (k - 1), ~, e), the Dirichlet series 

a t tached  to ~ and ~. Now by Theorem 1 of Shimura IS] 

L l ( m  , ~ ® ~ )  = L l ( m -  ( k -  1) ,~ ,~)  

(2~ri)m-(k-1)c+(-1)'~-(k-1) G(¢) 

for k_< m_<  2 k - 2  or 1 < r e - ( k - l )  _< k - 1 .  Here we use S h i m u r a ' s s i g n  

descript ion and the fact tha t  e ( - 1 )  = 1. Thus  

(4.2) i l ( m ,  ~ ® ~) ~ (2ri)mc:F(--1)mS(~) 

since k is even, using (4.1). 

Next ,  let Ll(s ,  ~ @ ~ ® ~) be the 

three copies of ~. I ts  set of critical 

Blasius 's  formula  on the top of page 

r = 3 ,  

Dirichlet series of Gar re t t  [Ga] a t t ached  to 

values is then  k _ m < 2k - 2. Applying  

187 of [B] -to Ly(s, ~ ~ ~ ® ~), thus let t ing 

1(rl) 
ni = ~ r~__11 = 1, 

and mi  = 2 r -2  - n~ = 1 (cf. §2.2 of [B]), one expects  

(4.3) Ll(ra , ~ ® ~ ® ~o) ~ (2~ri)4m(c+c-)3(f(~o) 3 

for every critical value m, i.e., integers k __ m _< 2k - 2. When  ~ is of level 

one (i.e., wi th  respect  to SL2(Z)),  (4.3) was proved by Orloff [B, O]. On the 

other  hand,  the proof  of (4.3) for a rb i t ra ry  ~ is the subject  m a t t e r  of [GH], 

§6.4 (cf. also [HK]). (For the whole interval, one needs to use the precise form 
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of the functional equation which is now proved in full generality [Shl]; cf. the 

introduction in [GH].) 

We now recall the symmetric cube L-function attached to ~ by Deligne [D] 

whose local factors are defined by 

3 
i .  H 3 -  - s  - 1  Lp(s, Sym 3qo)= H(1-ap~OLp 'p  ) . 

j=0 

In his notation d ± = 2 and he conjectures [D, Z] that 

Li (m ,  Sym 3 ~) ,,~ (2~i)2m(c~:)3c~5(~), 

where q- = ( -1 )  m for all critical values m, k < m < 2k - 2. Implicit in it is 

that  L I (ra, Sym a ~) is finite for all such m. This was proved in [Ki-Sh] and it is 

this which is new in the following proposition, as the rest of the material in this 

section is surely well known to experts in one form or another. (See Theorem 6.2 

of [GH].) 

PROPOSITION 4.1: Let k <_ m <_ 2k - 2 denote the set of critical values m for 

L l ( s  , Sym 3 ~). Then each LI(m,  Sym a ~) is finite and Deligne's conjecture 

L I (m, Sym 3 qo) ~ (27ri)'n(c±)3c~=5(~o) 

is valid, where + = ( -1 )  m. 

Proo~ We only need to observe that 

L l ( m  , Sym 3 qo) = L l ( m  , ~ ® ~ ® qo)/Ll(m , ~ ® ~)2 

and use (4.2) and (4.3). 

Next we turn our attention to the root numbers attached to symmetric cube 

L-functions for GL2. We shall show that they are the same as their Artin counter- 

parts [La3, Sh6, T]. 

Let F be a local field of characteristic zero, archimedean or otherwise. Let ~r 

be an irreducible admissible representation of GL2 (F). Fix a non-trivial additive 

character ¢ of F.  In [Sh5], we attached a root number e(s, It, Sym3(p2), ¢) which 

further satisfied 

(4.4) e(s, 7r, Sym3(p2), ¢2) = e(s, ~r x II, ~b)/e(e, 7r ® w, ¢),  

where H is the symmetric square lift of Ir in the sense of Gelbart-Jacquet [Ge-Ja] 

and w denotes the central character of It. The root number e(s, lr x H, ¢) is that  

of the Rankin-Selberg product attached to the pair (r ,  H) (cf. [JPSS, Sh6, Sh7]). 
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In a recent monumental work [HT] Harris and Taylor proved the local Lang- 
lands conjecture for GLn to the effect that it preserves root numbers for pairs. A 

simple proof of this was later given in [H2]. More precisely, if ¢ and ~ are the two 
and the three dimensional representations [H1, H2, HT, Ku] of the Deligne-Weil 
group parametrizing 7r and H, respectively, then 

e(s, ¢ ® ¢) = e(s, x n ,  ¢).  

Recall that • = Sym2¢ which simply means Sym2(p2). ¢, where Sym2(p2) is 

the three dimensional irreducible representation of GL2 (C) on symmetric tensors 
of rank 2 (or homogeneous polynomials of degree 2 in 2 variables). Now using 

¢ ® Sym 2 ¢ = Sym 3 ¢ @ (¢ ® A2¢), 

we have 

from which 

e(s, ¢ ® if, ¢) = ¢(s, Sym 3 ¢, ¢)¢(s, ¢ ® A2¢, ¢) 

¢(s, Sym 3 ¢, ¢) = e(s, 7r, Sym3(p2), ¢) 

follows. We similarly recall L(s, r ,  Sym3(p2)) from [Sh5]. It is again immediately 

clear that 
L(s, Sym 3 ¢) = L(s, re, Sym3(p2)) 

(of. [Sh5, BHK1, Sh6]). We collect this and the results from [Ki-Sh, Sh5] as: 

THEOREM 4.2: (a) Let ~r be an irreducible admissible representation of GL2(F), 

where F is a local field of characteristic zero, archimedean or otherwise. Let 

¢: W~ --+ GL2(C) be attached to ~r by the local Langlands correspondence [Ku, 
La3, HT, H2]. Then 

¢(s, Sym 3 ¢, ¢) = ¢(s, ~r, Sym3(p2), ¢) 

and 

L(s, Sym 3 ¢) = L(s, ~r, Sym3(p2)). 

(b) Let r be a cuspidal representation of GL2(A), where as before A is the 

ring of adeles of a number field. Fix a non-trivial character ¢ = ~ v  Cv of F \A .  

Write ~r = ~ v  7r~ and for each v, let Cv: W'F ~ GL2(C) parametrize ~rv. Let 

e(s, Sym 3 ¢~, ¢~) and L(s, Sym 3 Cv) be the corresponding Artin factors. Set 

L(s, ~r, Sym3(p2)) -- 1-I L(s, Sym 3 ¢.) 
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and 

a(S, 7r, Sym3(p2)) = H a ( s ,  Sym 3 av, av). 
v 

Then unless rc is monomial, L(s, 7r, Sym3(p2)) is entire. It satisfies 

g(s ,  7c, Syma(p2)) = e(s, ~r, Syma(p2))L(1 - s, K, Sym3(p2)). 

Similarly we can consider e(s, 7r, Sym4(p2), ¢) and L(s, ~r, Sym4(p2)), where 

F is local and ~r is an irreducible admissible representation of GL2 (F). More 

precisely, we let 

(4.5) a(s, 7r, Sym4(p2), ~)) = a(s, I] × I-[, 1/2)/6(s , w 2, ¢)e(s,  I] ® w, ~), 

where II is the symmetric square lift of rr defined before and w is the central 

character of 7r. If r is parametrized by ¢ as before we have 

¢(s, Sym 4 ¢, ¢) = ¢(s, Sym 2 ¢ ® Sym 2 ¢, ¢) /a(s ,  (A2¢) 2, ¢)e(s,  Sym 2 ¢ ® A2¢, ¢). 

Again appealing to [HT, H2] we have 

E(s, ~r, Sym4(p2), ¢) = a(s, Sym 4 ¢, ¢). 

Similarly for L-functions. We have [Sh6, Sh7] (see Remark 2). 

PROPOSITION 4.3: Part  (a) of Theorem 4.2 is valid ifSym3(p2) and Sym3¢ are 

replaced with Sym4(p2) and Sym 4 ¢. I f  7r = ~ % is a cusp form on GL2(A) 

and 

L(s, 7c, Sym4(p2)) = YI  L(s, Sym 4 av), 
v 

and 
e(s, 7r, Sym 4 (P2)) -- H ¢(s, Sym 4 av, av), 

v 

then L(s, lr, Sym4(p2)) is holomorphic on Re(s) _> 1 unless either r ,  or H, is 

monomial (see Remark 2), and extends to a meromorphic function of  s on C. It  

satisfies 

L(s,  re, Sym4(p2)) = c(s, ~r, Sym4(p2))L(1 - s, K, Sym4(p2)). 

Remark 1: In view of (4.4) and (4.5) and the main result of [BHK2], one can 

now also compute conductors for Sym 3 and Sym 4 root numbers. 
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Remark  2: Lemma 9.2 of [Sh 7] is incorrect and therefore it is possible for II 

to satisfy II  ~ H ® ~ for a non-trivial (cubic) character r/, which is to say II is 

dihedral or monomial. In that  case, i.e., when II -~ II @ ~/, r / ¢  1, as it is argued 

in the proof of Lemma 9.2, 7r itself will have a cubic cyclic base change, with the 

extension defined by ~/, which is monomial. 

Remark  3: The first author wishes to make the following corrections to [Ki3]: 
(1) In Proposition 0.1 and Proposition 2.1, "w0a = a" should be replaced with 
"w0~r -~ a" .  (2) On page 840, line -4 ,  "v ¢ S" should be replaced with "v c S". 
(3) On page 841, line - 5 ,  "w0" should be "wl". 
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